Chemical suppression of specific C-C chemokine signaling pathways enhances cardiac reprogramming

Yijing Guo, Ienglam Lei, Shuo Tian, Wenbin Gao, Karatas Hacer, Yangbing Li, Shaomeng Wang, Liu Liu, Zhong Wang
Journal of Biological Chemistry 2019 June 7, 294 (23): 9134-9146
Reprogramming of fibroblasts into induced cardiomyocytes (iCMs) is a potentially promising strategy for regenerating a damaged heart. However, low fibroblast-cardiomyocyte conversion rates remain a major challenge in this reprogramming. To this end, here we conducted a chemical screen and identified four agents, insulin-like growth factor-1, Mll1 inhibitor MM589, transforming growth factor-β inhibitor A83-01, and Bmi1 inhibitor PTC-209, termed IMAP, which coordinately enhanced reprogramming efficiency. Using α-muscle heavy chain-GFP-tagged mouse embryo fibroblasts as a starting cell type, we observed that the IMAP treatment increases iCM formation 6-fold. IMAP stimulated higher cardiac troponin T and α-actinin expression and increased sarcomere formation, coinciding with up-regulated expression of many cardiac genes and down-regulated fibroblast gene expression. Furthermore, IMAP promoted higher spontaneous beating and calcium transient activities of iCMs derived from neonatal cardiac fibroblasts. Intriguingly, we also observed that the IMAP treatment repressed many genes involved in immune responses, particularly those in specific C-C chemokine signaling pathways. We therefore investigated the roles of C-C motif chemokine ligand 3 (CCL3), CCL6, and CCL17 in cardiac reprogramming and observed that they inhibited iCM formation, whereas inhibitors of C-C motif chemokine receptor 1 (CCR1), CCR4, and CCR5 had the opposite effect. These results indicated that the IMAP treatment directly suppresses specific C-C chemokine signaling pathways and thereby enhances cardiac reprogramming. In conclusion, a combination of four chemicals, named here IMAP, suppresses specific C-C chemokine signaling pathways and facilitates Mef2c/Gata4/Tbx5 (MGT)-induced cardiac reprogramming, providing a potential means for iCM formation in clinical applications.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"