Add like
Add dislike
Add to saved papers

Characterization of Biosynthesized Silver Nanoparticles Using Lactobacillus rhamnosus GG and its In Vitro Assessment Against Colorectal Cancer Cells.

Silver nanoparticles are the most desirable nanoparticles broadly used in diverse fields. This study intends to investigate the anticancer properties of synthesized silver/Lactobacillus rhamnosus GG nanoparticles (Ag-LNPs) as a reducing and stabilizing agent in the synthesis process. To prepare silver/Lactobacillus rhamnosus GG nanoparticles, 1 mg/ml cell lysate of Lactobacillus rhamnosus GG and 1 mM silver nitrate solution were mixed and incubated for 72 h. XRD, FTIR, and TEM methods were used for nanoparticle characterization. MTT assay and annexin/PI staining were employed to analyze the toxicity and apoptotic cells levels of Ag-LNPs, respectively. TEM showed that these nanoparticles are spherical shaped about 233 nm in size. FTIR spectroscopy demonstrated that Ag-LNPs were functionalized with biomolecules. XRD pattern showed high purity and face-centered crystal structure of Ag-LNPs. MTT assay revealed that the percentages of HT-29 live cells significantly reduced in the high concentration of Ag-LNPs. Annexin/PI staining showed that these nanoparticles could lead HT-29 cells to apoptosis. This study showed the new Ag-LNP-synthesizing method using Lactobacillus rhamnosus GG as a cost-effective and efficient approach. Also, it showed that these nanoparticles can be considered as a potential active agent for biomedical applications and drug delivery due to their anticancer activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app