Add like
Add dislike
Add to saved papers

Improvements on biological and antimicrobial properties of titanium modified by AgNPs-loaded chitosan-heparin polyelectrolyte multilayers.

Microbial infection around dental implants is a major cause for the loss of devices, including soft tissue infection in early period, post-operation peri-implantitis, and osseointegration failure. Silver nanoparticles (AgNPs) with wide antimicrobial spectrum, strong antimicrobial effect and hypotoxicity, as well as low incidence of antibiotic resistance, are widely involved in biomedical applications. Herein, firmly anchoring AgNPs onto the surface of implants through physical-chemical reaction is likely to relieve the above issues. In this study, AgNPs were biosynthesized by a simple and "green" method with chitosan (CS) as stabilizing and reducing agents. Then, AgNPs-loaded CS-heparin polyelectrolyte multilayers (PEMs) were constructed on alkali-heat treated titanium (Ti) substrates via layer-by-layer (LbL) self-assembly technique. The successful surface modification could be confirmed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and the constructed system could provide the continuous release of Ag+ over 28 days till mucosa healing. In short, this work revealed that the construction of multilayer coatings containing AgNPs on Ti substrates promoted adhesion and proliferation of human gingival fibroblasts (HGFs) and also enhanced the antimicrobial properties. This manifests the LbL technique is a viable and promising method for forming continuous antimicrobial coatings, to reduce microbial infection and improve the quality of peri-implant soft tissue seal. The preparation process of AgNPs-loaded CS-heparin PEMs on Ti substrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app