Add like
Add dislike
Add to saved papers

Functional Specialization in Vibrio cholerae Diguanylate Cyclases: Distinct Modes of Motility Suppression and c-di-GMP Production.

MBio 2019 April 24
Vibrio cholerae biofilm formation and associated motility suppression are correlated with increased concentrations of cyclic diguanylate monophosphate (c-di-GMP), which are in turn driven by increased levels and/or activity of diguanylate cyclases (DGCs). To further our understanding of how c-di-GMP modulators in V. cholerae individually and collectively influence motility with cellular resolution, we determined how DGCs CdgD and CdgH impact intracellular c-di-GMP levels, motility, and biofilm formation. Our results indicated that CdgH strongly influences swim speed distributions; cells in which cdgH was deleted had higher average swim speeds than wild-type cells. Furthermore, our results suggest that CdgD, rather than CdgH, is the dominant DGC responsible for postattachment c-di-GMP production in biofilms. Lipopolysaccharide (LPS) biosynthesis genes were found to be extragenic bypass suppressors of the motility phenotypes of strains Δ cdgD and Δ cdgH We compared the motility regulation mechanism of the DGCs with that of Gmd, an LPS O-antigen biosynthesis protein, and discovered that comodulation of c-di-GMP levels by these motility effectors can be positively or negatively cooperative rather than simply additive. Taken together, these results suggest that different environmental and metabolic inputs orchestrate DGC responses of V. cholerae via c-di-GMP production and motility modulation. IMPORTANCE Cyclic diguanylate monophosphate (c-di-GMP) is a broadly conserved bacterial signaling molecule that affects motility, biofilm formation, and virulence. Although it has been known that high intracellular concentrations of c-di-GMP correlate with motility suppression and biofilm formation, how the 53 predicted c-di-GMP modulators in Vibrio cholerae collectively influence motility is not understood in detail. Here we used a combination of plate assays and single-cell tracking methods to correlate motility and biofilm formation outcomes with specific enzymes involved in c-di-GMP synthesis in Vibrio cholerae , the causative agent of the disease cholera.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app