Add like
Add dislike
Add to saved papers

Using a Scenario-Neutral Framework to Avoid Potential Maladaptation to Future Flood Risk.

This study develops a coherent framework to detect those catchment types associated with a high risk of maladaptation to future flood risk. Using the "scenario-neutral" approach to impact assessment the sensitivity of Irish catchments to fluvial flooding is examined in the context of national climate change allowances. A predefined sensitivity domain is used to quantify flood responses to +2 °C mean annual temperature with incremental changes in the seasonality and mean of the annual precipitation cycle. The magnitude of the 20-year flood is simulated at each increment using two rainfall-runoff models (GR4J, NAM), then concatenated as response surfaces for 35 sample catchments. A typology of catchment sensitivity is developed using clustering and discriminant analysis of physical attributes. The same attributes are used to classify 215 ungauged/data-sparse catchments. To address possible redundancies, the exposure of different catchment types to projected climate is established using an objectively selected subset of the Coupled Model Intercomparison Project Phase 5 ensemble. Hydrological model uncertainty is shown to significantly influence sensitivity and have a greater effect than ensemble bias. A national flood risk allowance of 20%, considering all 215 catchments is shown to afford protection against ~48% to 98% of the uncertainty in the Coupled Model Intercomparison Project Phase 5 subset (Representative Concentration Pathway 8.5; 2070-2099), irrespective of hydrological model and catchment type. However, results indicate that assuming a standard national or regional allowance could lead to local over/under adaptation. Herein, catchments with relatively less storage are sensitive to seasonal amplification in the annual cycle of precipitation and warrant special attention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app