Add like
Add dislike
Add to saved papers

An investigation of the detection capability of pulsed wave duplex Doppler of low grade stenosis using ultrasound contrast agent microbubbles - An in-vitro study.

Ultrasonics 2019 July
OBJECTIVE: The objective of the study was to investigate whether clinically used ultrasonic contrast agents improved the accuracy of spectral Doppler ultrasound in the detection of low grade (<50%) renal artery stenosis. Low grade stenoses in the renal artery are notoriously difficult to reliably detect using Doppler ultrasound due to difficulties such as overlying fat and bowel gas.

METHODS: A range of anatomically-realistic renal artery phantoms with varying low degrees of stenosis (0, 30 and 50%) were constructed and peak velocity data was measured from within the pre-stenotic and mid-stenotic regions in each phantom, for both unenhanced and contrast-enhanced spectral Doppler data acquisitions. The effect of a 20 mm overlying fat layer on the ultrasound beam distortion and phase aberration, and hence on the measured peak velocity data, was also investigated.

RESULTS: The overlying fat layer produced a statistically significant underestimation (p < 0.01) in both the peak velocity and peak velocity ratio [Stenotic Region(Vmax)/Pre-stenotic Region(Vmax)] for the 0% and 30% stenosis models, but not the 50% model. A statistically significant increase (p < 0.01) in the peak velocity was found in the contrast-enhanced Doppler spectra; however, no significant difference was found between the unenhanced and contrast enhanced peak velocity ratio data, which suggests that the ratio metric has better diagnostic accuracy. The peak velocity ratios determined for each of the contrast-enhanced phantoms correctly predicted if the phantom had a stenosis and furthermore correctly classified the degree of stenosis.

CONCLUSION: Contrast-enhanced Doppler ultrasound could significantly assist in the early detection of renal artery disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app