Add like
Add dislike
Add to saved papers

Computational Modeling of Bone Cells and Their Biomechanical Behaviors in Responses to Mechanical Stimuli.

Bone cells, including osteoblasts, osteoclasts, and osteocytes, have the ability to develop and maintain bone architecture. Although improved experimental testing approaches are increasing our understanding of the complex structures and functions of bone cells and bone, computational models, particularly finite element analyses, are being used to extend this knowledge and to develop a more theoretical understanding of bone cell behaviors. There are many challenges to developing an accurate and validated computational model due to the complex structure and biomechanical behaviors of the bone cells and bone tissue. A better understanding of the geometry and material properties of bone cells and bone will improve our understanding of the bone's biomechanical behaviors. In this review, we summarize and discuss the different geometric representations and material properties that have been used to model the bone cells. The current status of computational models, a comprehensive overview of the modeling methods for the bone cells, and the challenges for validating the models are presented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app