Add like
Add dislike
Add to saved papers

Hard Cr 2 O 3 coatings on SS316L substrates prepared by reactive magnetron sputtering technique: a potential candidate for orthopedic implants.

316L stainless steel (SS) implants suffer from tribological and biocompatibility problems which limit their service lifetime. In order to improve the surface properties of 316L SS for orthopedic implant applications, hard chromium oxide coatings were applied on 316L SS substrates using a reactive magnetron sputtering technique. The morphological, structural, and phase compositional analyses were conducted on the deposited coatings by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. The Rockwell-C indentation tests were performed on the coated substrates to qualitatively evaluate the adhesion of coatings on the steel substrates. The surface characteristics of coatings were measured by using an optical profilometer. The mechanical properties of coatings were reported by measuring the Hardness and Young's modulus. The corrosion resistance of coated and uncoated SS substrates was compared using potentiodynamic polarization tests. An inductively coupled plasma optical emission spectrometry (ICP-OES) was employed to analyze the biocompatibility of the samples by measuring the amount of toxic Cr ions released after the immersion test. The results show that the coatings are adherent and composed of a single Cr2 O3 phase with a hardness of 25 to 29 GPa. The corrosion resistance of the SS has been improved by applying a chromium oxide coating. The coated SS samples have also demonstrated better wear resistance and lower friction coefficient compared to bare SS samples under a reciprocating sliding condition in saline solution. The biocompatibility of the SS has been enhanced by the Cr2 O3 coating as much less Cr ions were released after immersion tests. These results indicate that the hard Cr2 O3 coatings can be considered as a candidate for extending the lifetime of SS implants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app