Add like
Add dislike
Add to saved papers

Mesoporous silica nanoparticles, a safe option for silymarin delivery: preparation, characterization, and in vivo evaluation.

The present work aimed to prepare silymarin-loaded mesoporous silica nanoparticles (MSNs) and to assess the system's dissolution enhancement ability on the pharmacodynamic performance of silymarin as a hepatoprotective agent. For this purpose, a soft-templating technique was used to prepare silymarin-loaded MSNs. The loaded MSNs were further characterized for their particle size, zeta potential, surface properties, and in vitro drug dissolution testing. In addition, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were also carried out. DSC and specific surface area data confirmed deposition of silymarin in an amorphous state in MSNs' pores. In vitro drug dissolution testing displayed enhanced dissolution rate of silymarin upon loading on MSNs compared with the free drug. Paracetamol-induced rat model of liver injury was used for the in vivo study. Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), total proteins, liver homogenate content of thiobarbituric acid reactive species (TBARS), or lactate dehydrogenase (LDH) were assessed for all animal groups, treated and control ones. Based on parameters indicative of liver function, our results showed that the oral use of silymarin loaded onto MSNs at a dose of 250 mg/kg is significantly superior to free silymarin. Moreover, prolonged administration of the formulation had no evident toxicity on rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app