Add like
Add dislike
Add to saved papers

Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration.

Biomaterials 2019 April 10
Photostability is a particularly important parameter for fluorescence imaging especially long-term dynamic tracking in live samples. However, many organic fluorophores show poor photostability under one-photon and two-photon continuous irradiation. In addition, these traditional fluorophores also suffer from aggregation-caused quenching (ACQ) in aggregate state in insolvable water environment. Therefore, it remains challenging to develop photostable and ACQ-free fluorophores for biological imaging. In this work, we developed two highly photostable aggregation-induced emission luminogens (AIEgens) based on the cyanostilbene core for in vitro and ex vivo bioimaging. These AIEgens named CS-Py+ SO3 - and CS-Py+ exhibit near-infrared solid-state emission, large Stokes shift (>180 nm), high fluorescence quantum yield (12.8%-13.7%) and good two-photon absorption cross section (up to 88 GM). CS-Py+ SO3 - and CS-Py+ show specific organelle staining with high biocompatibility in membrane and mitochondria in live cells, respectively. In addition, selective two-photon mitochondria visualization in live rat skeletal muscle tissues with deep-tissue penetration (about 100 μm) is successfully realized by using CS-Py+ . Furthermore, these AIEgens especially CS-Py+ exhibit remarkably high resistance to photobleaching under one-photon and two-photon continuous irradiation. These highly photostable AIEgens could be potentially utilized in visualizing and tracking specific organelle-associated dynamic changes in live systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app