Add like
Add dislike
Add to saved papers

Study of Gases Permeation in Necklace-Shaped Dimethylsiloxane Polymers Bearing POSS Cages.

Membranes 2019 April 17
The transport of small gases (H2 , CO2 , N2 , O2 ) through a series of novel membranes based on necklace-shaped inorganic polymers (DMS@POSS), in which a polyhedral oligomeric silsesquioxane (POSS) cage unit and soft chains of oligo-dimethyl siloxane (DMS) were alternately connected, was investigated. The influence of the DMS chain length and crosslinking density of the DMS@POSS on membrane properties were studied. The membranes revealed characteristic structure-property relation towards both glass transition and gases transport. Specifically, clear dependence of properties from the length of DMS units (or overall siloxane content) was revealed. Gas transport properties, when compared to state-of-art polydimethylsiloxane and commercial silicone rubber, demonstrated significantly higher selectivity of DMS@POSS for carbon dioxide (in CO2 /N2 ), hydrogen (in H2 /N2 ) and oxygen (in O2 /N2 ) but lowered permeability, proportional to the amount of POSS in the material. With a precise control over mechanical and thermal properties compared to conventional silicone rubbers, described materials could be considered as materials of choice in niche gas separation or other applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app