Add like
Add dislike
Add to saved papers

Improving the accuracy and precision of broadband optical cavity measurements.

Most extinction measurements require a stable light source to attain high precision and accuracy. Here, we present a convenient approach to normalize light source intensity in broadband optical cavity measurements. In the absence of sample extinction, we show that the in-band signal - the high finesse spectral region of the optical cavity in which sample extinction is measured with high sensitivity - is strongly correlated with the out-of-band signal. The out-of-band signal is insensitive to sample extinction and can act as a proxy for light source intensity. This normalization approach strongly suppressed in-band intensity changes in two incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) instruments with dissimilar light sources and optical cavity properties. Intensity fluctuations in an arc lamp system were suppressed by a factor of 7 to 16 and in the LED spectrometer by a factor of 10. This approach therefore improves the accuracy and precision of extinction measurements where either property is limited by the light source stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app