Add like
Add dislike
Add to saved papers

High-Field Detection of biomarkers with Fast Field-Cycling MRI: The Example of Zinc Sensing.

Many smart MRI probes provide response to a biomarker based on modulation of their rotational correlation time. The magnitude of such MRI signal changes is highly dependent on the magnetic field and the response decreases dramatically at high fields (> 2 T). To overcome the loss of efficiency of responsive probes at high field, with FFC-MRI we exploit field-dependent information rather than the absolute difference in the relaxation rate measured in the absence and in the presence of the biomarker at a given imaging field. We report here the application of fast field-cycling techniques combined with the use of a molecular probe for the detection of Zn2+ to achieve 166% MRI signal enhancement at 3 T, while the same agent provides no detectable response using conventional MRI. This approach can be generalized to any biomarker provided the detection is based on variation of the rotational motion of the probe.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app