Add like
Add dislike
Add to saved papers

Emission Enhancement from CdSe/ZnS Quantum Dots Induced by Strong Localized Surface Plasmonic Resonances without Damping.

A high-performance exciton-localized surface plasmon (LSP) coupling system consisting of well-designed plasmonic nanostructures and CdSe/ZnS quantum dots (QDs) was fabricated by first introducing a Ta2 O5 layer as both an adhesive coating and coupling medium. It is shown that a larger emission enhancement factor of 6 from CdSe/ZnS QDs can be obtained from the strong coupling effect between QDs and triprism Au nanoarrays and the high scattering efficiency of LSPs without damping. This can be attributed to the matching conditions and a low extinction coefficient with little damping absorption of the Ta2 O5 layer in the system. The radiative scattering rate of ΓLSPs can make a contribution to the spontaneous emission rate Γ and thus improve the internal quantum yield of the QDs. This strategy could be promising for practical application of metal-modified fluorescence enhancement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app