Add like
Add dislike
Add to saved papers

Improved functional oocyte enucleation by actinomycin D for bovine somatic cell nuclear transfer.

Somatic cell nuclear transfer (SCNT) allows animal cloning but remains technically challenging. This study investigated limitations to functional oocyte enucleation by actinomycin D (AD) as a means of making SCNT easier to perform. Denuding oocytes or inhibiting transcription before AD treatment revealed that the toxicity of this compound during bovine oocyte maturation is mediated by cumulus cells. Exposure of denuded oocytes to higher concentrations of AD (5-20μgmL-1) and stepwise reductions of the incubation period (from 14.0 to 0.25h) led to complete inhibition of parthenogenetic development. Bovine SCNT using this improved AD enucleation protocol (NT(AD)) restored cleavage rates compared with rates in the parthenogenetic and SCNT controls (P(CTL) and NT(CTL) respectively). However, NT(AD) was associated with increased caspase-3 activity in cleavage stage embryos and did not recover blastocyst rates. The removal of AD-treated oocyte spindle before reconstruction (NT(AD+SR)) improved embryo development and reduced caspase-3 activity to levels similar to those in the P(CTL) and NT(CTL) groups. Furthermore, mid-term pregnancies were achieved using NT(AD+SR) blastocysts. In conclusion, improvements in AD functional enucleation for bovine SCNT circumvents most cellular roadblocks to early embryonic development and future investigations must focus on restoring blastocyst formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app