Add like
Add dislike
Add to saved papers

Shortwave Near-Infrared Spectroscopy for Rapid Detection of Aflatoxin B 1 Contamination in Polished Rice.

The objective of this research was to apply near-infrared spectroscopy, with a short-wavelength range of 950 to 1,650 nm, for the rapid detection of aflatoxin B1 (AFB1 ) contamination in polished rice samples. Spectra were obtained by reflection mode for 105 rice samples: 90 samples naturally contaminated with AFB1 and 15 samples artificially contaminated with AFB1 . Quantitative calibration models to detect AFB1 were developed using the original and pretreated absorbance spectra in conjunction with partial least squares regression with prediction testing and full cross-validation. The statistical model from the external validation process developed from the treated spectra (standard normal variate and detrending) was most accurate for prediction, with a correlation coefficient ( r) of 0.952, a standard error of prediction of 3.362 μg/kg, and a bias of -0.778 μg/kg. The most predictive models according to full cross-validation were developed from the multiplicative scatter correction pretreated spectra ( r = 0.967, root mean square error in cross-validation [RMSECV] = 2.689 μg/kg, bias = 0.015 μg/kg) and standard normal variate pretreated spectra ( r = 0.966, RMSECV = 2.691 μg/kg, bias = 0.008 μg/kg). A classification-based partial least squares discriminant analysis model of AFB1 contamination classified the samples with 90% accuracy. The results indicate that the near-infrared spectroscopy technique is potentially useful for screening polished rice samples for AFB1 contamination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app