Add like
Add dislike
Add to saved papers

Screening, identification, and characterization of an affinity peptide specific to MT1-MMP and its application in tumor imaging.

Membrane type-1 matrix metalloproteinase (MT1-MMP) plays a crucial role in many physiological and pathological processes, especially in tumor invasion and metastasis. Bioimaging of this key molecule may find wide usage in various applications. MT-loop is a unique sequence of MT1-MMP and locates in the surface of the protein. In our previous studies, AF7p, an affinity peptide that targeting the MT-loop domain of MT1-MMP was identified by screening a phage display (Ph.D.) peptide library. However, the target of AF7p is a synthetic sequence which lacked native conformation of MT-loop region, thus the binding affinity and specificity in reality may not be optimal. In this study, we considered the 3-dimentional (3-D) conformation of the MT-loop area in the MT1-MMP molecule and designed a novel strategy to screen the Ph.D. peptide library. The peptide we obtained showed a better binding affinity to WT-MT1-MMP than AF7p as observed through enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). The new peptide labeled and attached MT1-MMP expression cell lines HT1080, and didn't show any toxicity to cells. Furthermore, for in vivo imaging, HT1080 tumor-bearing mice with higher MT1-MMP expression accumulated more Cy5.5-HS7 than mice with MT1-MMP low- expression cell lines A549 at tumor sites, and the half-life of HS7 was longer than that of AF7p, as confirmed by ex vivo imaging of the main organs. These results suggest the feasibility of using subtraction biopanning strategy to screen the affinity peptide targeting MT-loop regions and HS7 is a superior probe for noninvasively imaging MT1-MMP expression in MT1-MMP-positive tumor models. It provide impetus for further studies to use HS7 in early diagnosis of tumors and in peptide-mediated drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app