Add like
Add dislike
Add to saved papers

Methyl ketone production by Pseudomonas putida is enhanced by plant-derived amino acids.

Plants are an attractive source of renewable carbon for conversion to biofuels and bio-based chemicals. Conversion strategies often use a fraction of the biomass, focusing on sugars from cellulose and hemicellulose. Strategies that use plant components such as aromatics and amino acids may improve the efficiency of biomass conversion. Pseudomonas putida is a promising host for its ability to metabolize a wide variety of organic compounds. P. putida was engineered to produce methyl ketones, which are promising diesel blendstocks and potential platform chemicals, from glucose and lignin-related aromatics. Unexpectedly, P. putida methyl ketone production using Arabidopsis thaliana hydrolysates was enhanced 2-to 5-fold compared to sugar controls derived from engineered plants that overproduce lignin-related aromatics. This enhancement was more pronounced (~7-fold increase) with hydrolysates from non-engineered switchgrass. Proteomic analysis of the methyl ketone-producing P. putida suggested that plant-derived amino acids may be the source of this enhancement. Mass spectrometry-based measurements of plant-derived amino acids demonstrated a high correlation between methyl ketone production and amino acid concentration in plant hydrolysates. Amendment of glucose-containing minimal media with a defined mixture of amino acids similar to those found in the hydrolysates studied led to a 9-fold increase in methyl ketone titer (1.1 g/L). This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app