Add like
Add dislike
Add to saved papers

PCMD-1 Organizes Centrosome Matrix Assembly in C. elegans.

Centrosomes, the major microtubule-organizing centers of animal cells, are essential for the assembly of a bipolar spindle during mitosis. Spindle defective-5 (SPD-5), the main scaffold protein of the centrosome matrix in Caenorhabditis elegans, forms a thin core around non-mitotic centrioles. Upon mitotic entry, the SPD-5-containing centrosome matrix expands in a Polo-like-kinase 1 (PLK-1)-dependent manner and this enables an enhanced microtubule nucleation activity during mitosis. How the non-mitotic centrosome core is formed and how this core facilitates robust SPD-5 expansion at mitotic entry remains unknown. Here, we present evidence that the coiled-coil protein pericentriolar matrix deficient-1 (PCMD-1) is necessary for the efficient loading of SPD-5, SPD-2, and PLK-1 to the non-mitotic centrosome core. Furthermore, we demonstrate that the absence of PCMD-1 disrupts pericentriolar material (PCM) recruitment and integrity. The expansion of centrosomes into spherical structures at the mitotic entry is compromised. We propose that PCMD-1 acts as a molecular platform for mitotic regulators and for components of the PCM, thereby allowing functional interactions between them, which in turn is necessary for the organization of the mitotic centrosome and, hence, spindle bipolarity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app