Add like
Add dislike
Add to saved papers

Application of ecogeochemical prediction model to safely exploit seleniferous soil.

Seleniferous soil and crops have recently attracted attention worldwide. Cultivating seleniferous crops in the absence of heavy metals is greatly challenging. This study aimed to develop approaches for the safe exploitation of seleniferous soil. We collected 246 pairs of rice grain samples and their corresponding rhizosphere soil samples and 8542 topsoil samples from Binyang and Xingbin in Guangxi. The Cd, Cu, Hg, Pb, Zn, and Se contents of soil and rice grain samples were tested. Several soil properties, including CaO, Mn, Mo, and S contents; total organic carbon content; and pH were also measured. Soil and rice grain samples that were classified as seleniferous accounted for 85.77% and 88% of all samples, respectively. More than 30% of soil and rice grain samples were potentially polluted by Cd. The percentage of seleniferous rice grain samples increased as soil Se concentration increased. Notably, however, the percentage of Cd-polluted rice grain samples decreased with the increase in soil Cd concentration. Models for the prediction of BAFs of heavy metal and Se were accurately established on the basis of significant partial correlations between log10 (BAFs) and log10 (soil properties). Farmlands with seleniferous soil under preferential protection and with safely exploited seleniferous soil accounted for 82.61% of the total study area. Sites that require remediation or land-use changes accounted for only 14.7% of the total study area and were mainly distributed in the center of the study area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app