MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Evaluating a New International Risk-Prediction Tool in IgA Nephropathy

Sean J Barbour, Rosanna Coppo, Hong Zhang, Zhi-Hong Liu, Yusuke Suzuki, Keiichi Matsuzaki, Ritsuko Katafuchi, Lee Er, Gabriela Espino-Hernandez, S Joseph Kim, Heather N Reich, John Feehally, Daniel C Cattran
JAMA Internal Medicine 2019 July 1, 179 (7): 942-952
30980653

Importance: Although IgA nephropathy (IgAN) is the most common glomerulonephritis in the world, there is no validated tool to predict disease progression. This limits patient-specific risk stratification and treatment decisions, clinical trial recruitment, and biomarker validation.

Objective: To derive and externally validate a prediction model for disease progression in IgAN that can be applied at the time of kidney biopsy in multiple ethnic groups worldwide.

Design, Setting, and Participants: We derived and externally validated a prediction model using clinical and histologic risk factors that are readily available in clinical practice. Large, multi-ethnic cohorts of adults with biopsy-proven IgAN were included from Europe, North America, China, and Japan.

Main Outcomes and Measures: Cox proportional hazards models were used to analyze the risk of a 50% decline in estimated glomerular filtration rate (eGFR) or end-stage kidney disease, and were evaluated using the R2D measure, Akaike information criterion (AIC), C statistic, continuous net reclassification improvement (NRI), integrated discrimination improvement (IDI), and calibration plots.

Results: The study included 3927 patients; mean age, 35.4 (interquartile range, 28.0-45.4) years; and 2173 (55.3%) were men. The following prediction models were created in a derivation cohort of 2781 patients: a clinical model that included eGFR, blood pressure, and proteinuria at biopsy; and 2 full models that also contained the MEST histologic score, age, medication use, and either racial/ethnic characteristics (white, Japanese, or Chinese) or no racial/ethnic characteristics, to allow application in other ethnic groups. Compared with the clinical model, the full models with and without race/ethnicity had better R2D (26.3% and 25.3%, respectively, vs 20.3%) and AIC (6338 and 6379, respectively, vs 6485), significant increases in C statistic from 0.78 to 0.82 and 0.81, respectively (ΔC, 0.04; 95% CI, 0.03-0.04 and ΔC, 0.03; 95% CI, 0.02-0.03, respectively), and significant improvement in reclassification as assessed by the NRI (0.18; 95% CI, 0.07-0.29 and 0.51; 95% CI, 0.39-0.62, respectively) and IDI (0.07; 95% CI, 0.06-0.08 and 0.06; 95% CI, 0.05-0.06, respectively). External validation was performed in a cohort of 1146 patients. For both full models, the C statistics (0.82; 95% CI, 0.81-0.83 with race/ethnicity; 0.81; 95% CI, 0.80-0.82 without race/ethnicity) and R2D (both 35.3%) were similar or better than in the validation cohort, with excellent calibration.

Conclusions and Relevance: In this study, the 2 full prediction models were shown to be accurate and validated methods for predicting disease progression and patient risk stratification in IgAN in multi-ethnic cohorts, with additional applications to clinical trial design and biomarker research.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
30980653
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"