Add like
Add dislike
Add to saved papers

Rapid Solution-Phase Hydrogen/Deuterium Exchange for Metabolite Compound Identification.

Rapid, solution-phase hydrogen/deuterium exchange (HDX) coupled with mass spectrometry (MS) is demonstrated as a means for distinguishing small-molecule metabolites. HDX is achieved using capillary vibrating sharp-edge spray ionization (cVSSI) to allow sufficient time for reagent mixing and exchange in micrometer-sized droplets. Different compounds are observed to incorporate deuterium with varying efficiencies resulting in unique isotopic patterns as revealed in the MS spectra. Using linear regression techniques, parameters representing contribution to exchange by different hydrogen types can be computed. In this proof-of-concept study, the exchange parameters are shown to be useful in the retrodiction of the amount of deuterium incorporated within different compounds. On average, the exchange parameters retrodict the exchange level with ~ 2.2-fold greater accuracy than treating all exchangeable hydrogens equally. The parameters can be used to produce hypothetical isotopic distributions that agree (± 16% RMSD) with experimental measurements. These initial studies are discussed in light of their potential value for identifying challenging metabolite species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app