Add like
Add dislike
Add to saved papers

Pore-forming spider venom peptides show cytotoxicity to hyperpolarized cancer cells expressing K+ channels: A lentiviral vector approach.

Recent studies demonstrated the upregulation of K+ channels in cancer cells. We have previously found that a pore-forming peptide LaFr26, purified from the venom of the Lachesana sp spider, was selectively incorporated into K+ channel expressing hyperpolarized cells. Therefore, it is expected that this peptide would have selective cytotoxicity to hyperpolarized cancer cells. Here we have tested whether LaFr26 and its related peptide, oxyopinin-2b, are selectively cytotoxic to K+ channel expressing cancer cells. These peptides were cytotoxic to the cells, of which resting membrane potential was hyperpolarized. The vulnerabilities of K+ channel-expressing cell lines correlated with their resting membrane potential. They were cytotoxic to lung cancer cell lines LX22 and BEN, which endogenously expressed K+ current. Contrastingly, these peptides were ineffective to glioblastoma cell lines, U87 and T98G, of which membrane potentials were depolarized. Peptides have a drawback, i.e. poor drug-delivery, that hinders their potential use as medicine. To overcome this drawback, we prepared lentiviral vectors that can express these pore-forming peptides and tested the cytotoxicity to K+ channel expressing cells. The transduction with these lentiviral vectors showed autotoxic activity to the channel expressing cells. Our study provides the basis for a new oncolytic viral therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app