Add like
Add dislike
Add to saved papers

Inhibition of miRNA-27b enhances neurogenesis via AMPK activation in a mouse ischemic stroke model.

FEBS Open Bio 2019 Februrary 26
Stroke is a leading cause of death and disability, but treatment options remain limited. Recent studies have suggested that cerebral ischemia-induced neurogenesis plays a vital role in post-stroke repair. Overactivation of AMP-activated protein kinase (AMPK), a master sensor of energy balance, has been reported to exacerbate neuron apoptosis, but the role of chronic AMPK stimulus in post-stroke recovery remains unclear. MicroRNAs have emerged as regulators of neurogenesis and have been reported to be involved in neurological function. In this study, we verified that miR-27b directly targets AMPK and inhibits AMPK expression. In cultured neural stem cells, miR-27b inhibitor improved proliferation and differentiation via the AMPK signaling pathway, but did not have an obvious effect on cell viability under oxygen and glucose deprivation conditions. In a mouse middle cerebral artery occlusion model, administration of miR-27b inhibitor significantly enhanced behavioral function recovery and spatial memory. Up-regulation of neurogenesis was observed both in the subventricular zone and in the hippocampal dentate gyrus. Collectively, our data suggest that miR-27b inhibition promotes recovery after ischemic stroke by regulating AMPK activity. These findings may facilitate the development of novel therapeutic strategies for stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app