Add like
Add dislike
Add to saved papers

Exenatide Modulates Visual Cortex Responses.

AIMS: Increasing evidence suggests that metabolism affects brain physiology. Here we examine the effect of GLP-1 on simple visual-evoked fMRI responses in cortical areas.

MATERIAL AND METHODS: Lean (n=10) and non-diabetic obese (n=10) subjects received exenatide (a GLP-1 agonist) or saline infusion and fMRI responses to visual stimuli (food and nonfood images) were recorded. We analyzed the effect of exenatide on fMRI signals across the cortical surface with special reference to the visual areas. We evaluated the effects of exenatide on the raw fMRI signal and on the fMRI signal change during visual stimulation (vs. rest).

RESULTS: In line with previous studies, we find that exenatide eliminates the preference for food (over nonfood) images present under saline infusion in high-level visual cortex (temporal pole). In addition, we find that exenatide (vs. saline) also modulates the response of early visual areas, enhancing responses to both food and nonfood images in several extra-striate occipital areas, similarly in obese and lean participants. Unexpectedly, exenatide increased fMRI raw signals (signal intensity during rest periods without stimulation) in a large occipital region, which were negatively correlated to BMI.

CONCLUSIONS: In both lean and obese individuals, exenatide affects neural processing in visual cortex, both in early visual areas and in higher order areas. This effect may contribute to the known effect of GLP1-analogues on food related behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app