Add like
Add dislike
Add to saved papers

Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions.

Transfusion 2019 April 12
BACKGROUND: Whereas platelet transfusion is a common medical procedure, inflammation still occurs in a fraction of transfused individuals despite the absence of any apparent infectious agents. Platelets can shed membrane vesicles, called extracellular vesicles (EVs), some of which contain mitochondria (mito+EV). With its content of damage-associated molecular pattern (DAMP), the mitochondrion can stimulate the innate immune system. Mitochondrial DNA (mtDNA) is a recognized DAMP detected in the extracellular milieu in numerous inflammatory conditions and in platelet concentrates. We hypothesized that platelet-derived mitochondria encapsulated in EVs may represent a reservoir of mtDNA.

STUDY DESIGN AND METHODS: Herein, we explored the implication of mito+EVs in the occurrence of mtDNA quantified in platelet concentrate supernatants that induced or did not induce transfusion adverse reactions.

RESULTS: We observed that EVs were abundant in platelet concentrates, and platelet-derived mito+EVs were more abundant in platelet concentrates that induced adverse reactions. A significant correlation (rs  = 0.73; p < 0.0001) between platelet-derived mito+EV levels and mtDNA concentrations was found. However, there was a nonsignificant correlation between the levels of EVs without mitochondria and mtDNA concentrations (rs  = -0.11; p = 0.5112). The majority of the mtDNA was encapsulated into EVs.

CONCLUSION: This study suggests that platelet-derived EVs, such as those that convey mitochondrial DAMPs, may be a useful biomarker for the prediction of potential risk of adverse transfusion reactions. Moreover, our work implies that investigations are necessary to determine whether there is a causal pathogenic role of mitochondrial DAMP encapsulated in EVs as opposed to mtDNA in solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app