Add like
Add dislike
Add to saved papers

High-Mobility Group Box 1 Is Associated with the Inflammatory Pathogenesis of Graves' Orbitopathy.

Background: High-mobility group box 1 (HMGB1) has been implicated in the pathogenesis of inflammatory autoimmune diseases. This study investigated the influence and mechanisms of HMGB1 in Graves' orbitopathy (GO). Methods: HMGB1 and its receptors (receptor for advanced glycation end products [RAGE], Toll-like receptor [TLR] 2, and TLR4) mRNA levels were evaluated by real-time polymerase chain reaction (RT-PCR) in GO and non-GO orbital tissues. The mRNA expressions of HMGB1 and its receptors were evaluated in primary cultured orbital fibroblasts from six GO patients and five healthy control subjects under interleukin (IL)-1β or tumor necrosis factor (TNF)-α stimulation using RT-PCR. HMGB1 secretions under IL-1β or TNF-α stimulation were evaluated by enzyme-linked immunosorbent assay (ELISA). The effects of an anti-HMGB1 antibody, RAGE antagonist (FPS-ZM1), and anti-TLR2 antibody on the expressions of IL-1β or TNF-α induced pro-inflammatory cytokines and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells were evaluated using ELISA and Western blot analysis, respectively. The plasma levels of HMGB1 were compared among patients with active GO ( n  = 51), inactive GO ( n  = 48), Graves' disease without GO ( n  = 30), and healthy control subjects ( n  = 46) by ELISA. Results: The genes encoding HMGB1 and its receptors, as well as HMGB1 protein expression, were increased in GO orbital tissues compared to non-GO tissues. IL-1β and TNF-α stimulation increased the mRNA levels of HMGB1, RAGE, and TLR2 and the secretion of HMGB1 protein further in GO cells. Anti-HMGB1 antibody, FPS-ZM1, and anti-TLR2 antibody reduced IL-1β- or TNF-α-induced production of pro-inflammatory cytokines and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells. The plasma levels of HMGB1 were highly increased in patients with active GO, and were significantly correlated with the clinical activity score ( r  = 0.566, p  = 0.002) and levels of thyrotropin binding inhibitory immunoglobulin ( r  = 0.506, p  < 0.001). Conclusions: This study demonstrates an association of HMGB1 and its receptors in the inflammatory mechanisms of GO. HMGB1, RAGE, and TLR2 blockers reduced the production of pro-inflammatory molecules, providing a rationale for blocking the HMGB1 pathway to treat patients with GO. HMGB1 proteins were secreted further in the plasma of patients with active GO, suggesting that HMGB1 can be used as a biomarker of GO activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app