Add like
Add dislike
Add to saved papers

Study of Geometrically Necessary Dislocations of a Partially Recrystallized Aluminum Alloy Using 2D EBSD.

During recrystallization, the growth of fresh grains initiated within a deformed microstructure causes dramatic changes in the dislocation structure and density of a heavily deformed matrix. In this paper, the microstructure of a cold rolled and partially recrystallized Al-Mg alloy (AA5052) was studied via electron backscattered diffraction (EBSD) analysis. The structure and density of the geometrically necessary dislocations (GNDs) were predicted using a combination of continuum mechanics and dislocation theory. Accordingly, the Nye dislocation tensor, which determines the GND structure, was estimated by calculation of the lattice curvature. To do so, five components of the Nye dislocation tensor were directly calculated from the local orientation of surface points of the specimen, which was determined by two-dimensional EBSD. The remaining components of GNDs were determined by minimizing a normalized Hamiltonian equation based on dislocation energy. The results show the elimination of low angle boundaries, lattice curvature, and GNDs in recrystallized regions and the formation of low angle boundaries with orientation discontinuities in deformed grains, which may be due to static recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app