Add like
Add dislike
Add to saved papers

Applicability of a human cell co-culture model to evaluate antioxidant responses triggered by chemical mixtures in fish and oyster homogenates.

The accumulation of chemical compounds in fish tissue represents significant health concerns for seafood consumers, but little is known about the risks to human health associated with such substances. The identification of adverse biological responses upon exposure to contaminants has been facilitated by the development of in vitro systems resembling the human dietary pathway. The present study explores the applicability of an organotypic co-culture system, using intestinal (Caco-2) and hepatic (HepaRG) cell lines, to provide insight into the toxicity of chemical mixtures found in commercially available seafood. Chemical extractions were conducted utilizing fish and oyster standard reference material (SRM) from the U.S. National Institute of Standards and Technology (NIST). Cells were seeded in monoculture and co-culture systems and exposed to SRM extracts before measurements of cytotoxicity and antioxidant responses. Exposure to oyster extracts led to significant cell mortality in monocultures. HepaRG cells in monoculture expressed lower levels of glutathione peroxidase and superoxide dismutase than HepaRG cells in co-culture, upon exposure to both oyster and fish extracts. These observations illustrate the importance of organotypic co-culture models to explore biological responses that could be otherwise difficult to evaluate in monocultures, and the adverse effects associated with the consumption of contaminated seafood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app