Journal Article
Review
Add like
Add dislike
Add to saved papers

Cell theory, intrinsically disordered proteins, and the physics of the origin of life.

Cell theory, as formulated by Theodor Schwann in 1839, introduced the idea that the cell is the main structural unit of living nature. Later, in solving the problem of cell multiplication, Rudolf Virchow expanded the cell theory with a postulate: all cells only arise from pre-existing cells. But what did the very first cell arise from? This paper proposes extending the Virchow's law by the assumption that between the nonliving protocell and the first living cell the continuity of fundamental physical properties (the principle of invariance of physical properties) is preserved. The protocell is understood here as a cell-shaped physical system on the basis of the self-organized biologically significant prebiotic macromolecules, primarily peptides, having a potential to transform into the living cell. Biophase is considered as the physical basis of the membraneless protocell, the internal environment of which is separated from the external environment due to the phase of adsorbed water. The evidence is given that the first protocells may have been formed on the basis of intrinsically disordered peptides. Data on the similarity of the physical properties of living cells and the following model systems are given: protein and artificial polymer solutions, coacervate droplets, and ion-exchange resin granules. Available data on the similarity of the physical properties of cell models and living cells allow us to rephrase the Virchow's postulate as follows: the physical properties of a living cell could only arise from pre-existing physical properties of the protocell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app