Add like
Add dislike
Add to saved papers

Transcriptome analysis of leg muscles in fast and slow growth Bian chickens.

Chicken is popular among consumers in the market, but the mechanism for regulating its growth is still unclear. In this experiment, two groups of Bian chickens of different body weights at 16 weeks of age were studied. The leg muscles were taken for transcriptome sequencing after slaughter. In the differential gene screening, all the genes obtained by sequencing the fast and slow growth groups were screened by Fold Change ≥2 and False Discovery Rate (FDR) <0.05, and 108 differentially expressed genes were obtained. The slow growth group has 17 up-regulated genes and 91 down-regulated genes compared with the fast growing group. Significance analysis of differentially expressed genes in gene ontology (GO) enrichment indicates that there are 65, 16 and 6 significantly enriched entries in the three main categories of biological processes, cellular components and molecular functions (P-value <0.05), respectively. Pathway enrichment analysis yielded three significantly enriched signal pathways: Adrenergic signaling in cardiomyocytes, Cardiac muscle contraction and Tight junction. The experiment would contribute to reveal the molecular mechanism of chicken growth and provide a theoretical basis for improving the performance of Bian chicken.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app