Add like
Add dislike
Add to saved papers

Suppression in advanced glycation adducts of human serum albumin by bio-enzymatically synthesized gold and silver nanoformulations: A potential tool to counteract hyperglycemic condition.

Biochimie 2019 April 6
Advanced glycation end-products (AGEs) from non-enzymatic glycation are implicated in several degenerative diseases, including being a crucial contributor in secondary complications of diabetes. This has garnered significant scientific interest in inhibiting agents of AGEs to prevent and remediate disorders arising due to glycation. In the current study, inhibitory effects on AGEs formation were investigated using bio-enzymatically synthesized nanoformulations of gold (AuNPs) and silver (AgNPs) by physiologically important enzyme, β galactosidase. Human serum albumin, most abundant protein in human blood plasma, was glycated by incubating with glucose leading to AGEs formation. The AGEs formation was significantly minimized with both AuNPs and AgNPs, as confirmed by various biophysical and biochemical techniques. Circular dichroism and Fourier transform infrared spectroscopy further affirmed antiglycation potential of AuNPs and AgNPs. The results were corroborated with thiol group, free lysine and carbonyl content estimation for native, glycated and nanoparticles (NPs) treated samples. Confocal microscopic imaging was performed to exhibit glycation inhibiting potential of the NPs. The inhibition of AGEs was observed to be slightly stronger in case of AgNPs than AuNPs with both exhibiting promising results as potential anti-glycating agents. The study sheds light on potential of non-toxic NPs being utilized as controlling agents against hyperglycemic conditions and diabetes management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app