Add like
Add dislike
Add to saved papers

EEG-based connectivity in patients with partial seizures with and without generalization.

Background and purpose: To investigate the neurophysiological basis of secondary generalization of partial epileptic seizures.

Methods: Inter-ictal, resting-state EEG functional connectivity (EEGfC) was evaluated and compared: patients with exclusively simple partial seizures (sp group) were compared to patients with simple partial and secondary generalized seizures (spsg group); patients with exclusively complex partial seizures (cp group) were compared to patients with cp and secondary generalized seizures (cpsg group); the collapsed sp+cp group (spcp) was compared to those who had exclusively secondary generalized seizures (sg group). EEGfC was computed from 21-channel waking EEG. 3 minutes of waking EEG background activity was analyzed by the LORETA Source Correlation (LSC) software. Current source density time series were computed for 23 pre-defined cortical regions (ROI) in each hemisphere, for the 1-25 Hz very narrow bands (1 Hz bandwidth). Thereafter Pearson correlation coefficients were calculated between all pairs of ROI time series in the same hemisphere. Z-scored correlation coefficients were compared at the group level (t-tests and correction for multiple comparisons by local false discovery rate, FDR).

Results: Statistically significant (corrected p<0.05) EEGfC differences emerged at specific frequencies (spsg > sg; cpsg > cp), and at many frequencies (sg > spcp). The findings indicated increased coupling between motor cortices and several non-motor areas in patients with partial and sg seizures as compared to patients with partial seizures and no sg seizures. Further findings suggested increased coupling between medial parietal-occipital areas (structural core of the cortex) and lateral hemispheric areas.

Conclusion: Increased inter-ictal EEGfC is associated with habitual occurrence of secondary generalized seizures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app