Add like
Add dislike
Add to saved papers

Tumor imaging using radiolabelled matrix metalloproteinase-activated anthrax proteins.

Purpose: Increased activity of matrix metalloproteinases (MMPs) is associated with worse prognosis in different cancer types. The protective antigen (PA-WT) of the binary anthrax lethal toxin was modified to form a pore in cell membranes only when cleaved by MMPs (PA-L1). Anthrax lethal factor (LF) is then able to translocate through these pores. Here, we used an 111 In-radiolabelled form of LF with the PA/LF system for non-invasive in vivo imaging of MMP activity in tumour tissue by single photon emission computed tomography (SPECT). Methods: MMP-mediated activation of PA-L1 was correlated to anthrax receptor expression and MMP activity in a panel of cancer cells (HT1080, MDA-MB-231, B8484 and MCF7). Uptake of 111 In-radiolabelled PA-L1, 111 In-PA-WTK563C or 111 In-LFE687A (a catalytically inactive LF mutant) in tumour and normal tissues was measured using SPECT/CT imaging in vivo. Results: Activation of PA-L1 in vitro correlated with anthrax receptor expression and MMP activity (HT1080>MDA-MB-231>B8484>MCF7). PA-L1-mediated delivery of 111 In-LFE687A was demonstrated, and corroborated using confocal microscopy with fluorescently labelled LFE687A Uptake was blocked by the broad-spectrum MMP inhibitor GM6001. In vivo imaging showed selective accumulation of 111 In-PA-L1 in MDA-MB-231 tumour xenografts (5.7±0.9%ID/g) at 3 h post intravenous administration. 111 In-LFE687A was selectively delivered to MMP-positive MDA-MB-231 tumour tissue by MMP-activatable PA-L1 (5.98±0.62%ID/g), but not by furin cleavable PA-WT (1.05±0.21%ID/g), or a non-cleavable PA variant control, PA-U7 (2.74 ± 0.24%ID/g). Conclusion: Taken together, our results indicate that radiolabelled forms of mutated anthrax lethal toxin hold promise for non-invasive imaging of MMP activity in tumour tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app