Journal Article
Review
Add like
Add dislike
Add to saved papers

Role of the P2X7 receptor in the pathogenesis of type 2 diabetes and its microvascular complications.

P2X7 receptors can be found in many tissues and organs, where they mediate several biological functions. This review summarizes the current knowledge about the role of this receptor in the pathogenesis of type 2 diabetes, in which the key clinical features are impaired insulin secretion and sensitivity, hyperglycemia, coexistence of other cardiovascular risk factors such as dyslipidemia and hypertension, and subclinical inflammation. The receptor modulates crucial pathways in the pancreatic islets (where it can either exert a trophic or detrimental action on β cells), and in the liver, in the adipose tissue and in the skeletal muscle, which are main sites of insulin resistance. P2X7 receptors also modulate a series of inflammatory responses that participate in the development of the microvascular complications of the disease. Potent and selective P2X7R blockers are available to be tested in Phase I/II clinical studies for the treatment of several chronic diseases, and it might be worthwhile to consider inclusion of patients with type 2 diabetes and its complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app