Add like
Add dislike
Add to saved papers

Development of quantitative structure-activity relationship models to predict potential nephrotoxic ingredients in traditional Chinese medicines.

The broad use of traditional Chinese medicines (TCMs) and the accompanied incidences of kidney injury have attracted considerable interest in investigating the responsible toxic ingredients. It is challenging to evaluate toxicity of TCMs since they contain complex mixtures of phytochemicals. Quantitative structure-activity relationship (QSAR) is an efficient tool to predict toxicity and QSAR study on TCMs-induced nephrotoxicity remains lacked. We developed QSAR models using three datasets of 609 compounds: natural products, drugs, and mixed (contained both kinds of data) datasets. Each dataset was used for modelling by utilizing artificial neural networks (ANN) and support vector machines (SVM) algorithms separately. Both internal and external validations were performed on each model. Six QSAR models were developed and yielded reliable performance in the internal validation. For external validation, 30 ingredients in the TCMs were predicted well by the natural product models (accuracy: ANN 96.7%, SVM 93.3%). The mixed models (accuracy: ANN 76.7%, SVM 66.7%) showed a better performance than the drug models (accuracy: ANN 50%, SVM 53.3%). Particularly, natural product models produced the most reliable results. It has the application not only on screening the nephrotoxic ingredients in TCMs, but it is also helpful at prioritizing the subsequent toxicity testing of natural products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app