Add like
Add dislike
Add to saved papers

Hesperidin inhibits synovial cell inflammation and macrophage polarization through suppression of the PI3K/AKT pathway in complete Freund's adjuvant-induced arthritis in mice.

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis. Synovitis can cause joint injury by releasing inflammatory factors and metalloproteinases (MMPs). Therefore, it is necessary to find drugs that can control synovitis in the process of RA. Herein, we investigate the anti-inflammatory effect of Hesperidin (HSN) on fibroblast-like synovial (FLS) cells induced by lipopolysaccharide (LPS) and the protective action of M1 polarization level of synovial macrophages on antigen-induced arthritis (AIA) in order to elucidate the reduction of inflammatory cytokines and MMPs and the inhibition of macrophage activation. The functional effect of HSN on LPS-induced mRNA and protein expressions of inflammatory cytokines and MMPs in FLS cells as well as on LPS-induced macrophage M1 and M2 polarization markers was determined by quantitative real-time PCR (qPCR) or Western blot analyses, respectively. AIA in 2-month-old mice was generated using intraperitoneal injection with HSN (20 mg/kg/day) or LY294002 (20 mg/kg/day). The results show HSN significantly inhibited the LPS-induced gene expression of the inflammatory mediators. Furthermore, treatment with HSN relieved the antigen-induced arthritis and reduced the protein levels of MMP3, MMP9, and MMP13 in FLS and inhibited the polarization of macrophages to M1. Based on the results of our analyses, we concluded that HSN has significant anti-inflammatory activities and reduces the potential of MMPs in rheumatoid arthritis and the degree of polarization of macrophages to M1. Through the study of signaling pathways, we established that the inhibition of the PI3K/AKT signaling pathway by HSN may show therapeutic effects in the progression of rheumatoid arthritis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app