Add like
Add dislike
Add to saved papers

Evaluation of Indirect Methods for Motion Compensation in 2-D Focal Liver Lesion Contrast-Enhanced Ultrasound (CEUS) Imaging.

This study investigates the application and evaluation of existing indirect methods, namely point-based registration techniques, for the estimation and compensation of observed motion included in the 2-D image plane of contrast-enhanced ultrasound (CEUS) cine-loops recorded for the characterization and diagnosis of focal liver lesions (FLLs). The value of applying motion compensation in the challenging modality of CEUS is to assist in the quantification of the perfusion dynamics of an FLL in relation to its parenchyma, allowing for a potentially accurate diagnostic suggestion. Towards this end, this study also proposes a novel quantitative multi-level framework for evaluating the quantification of FLLs, which to the best of our knowledge remains undefined, notwithstanding many relevant studies. Following quantitative evaluation of 19 indirect algorithms and configurations, while also considering the requirement for computational efficiency, our results suggest that the "compact and real-time descriptor" (CARD) is the optimal indirect motion compensation method in CEUS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app