Mechanical and chemical characterisation of bioresorbable polymeric stent over two-year in vitro degradation

Raasti Naseem, Liguo Zhao, Vadim Silberschmidt, Yang Liu, Ollie Scaife, Helen Willcock, Senthil Eswaran, Syed Hossainy
Journal of Biomaterials Applications 2019 April 5, : 885328219839591
Polymeric stent is a temporary cardiovascular scaffold, made of biodegradable poly (l-lactic) acid, to treat coronary artery stenosis, with expected resorption by the human body over two to three years. In this paper, the mechanical properties of a polymeric stent over two-year in vitro degradation were studied and characterised using atomic force microscopy and nanoindentation techniques, complemented with analyses of weight loss, gel permeation chromatography and differential scanning calorimetry. Atomic force microscopy assessed stent degradation at the surface, whilst nanoindentation was able to investigate the property at a greater depth into the material. No significant changes to the Young's modulus were observed with the atomic force microscopy due to bulk degradation nature of the polymer. Chemical analyses demonstrated a reduction of molecular weight and an increase of crystallinity, indicating degradation of the stents. Berkovich nanoindentation showed a trend of reduction in modulus over in vitro degradation, which was, however, not continuous due to the variations of measurements associated with the pyramidal indenter tip and the semi-crystalline structure of the polymer.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"