Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Predicting DNA Methylation States with Hybrid Information Based Deep-Learning Model.

DNA methylation plays an important role in the regulation of some biological processes. Up to now, with the development of machine learning models, there are several sequence-based deep learning models designed to predict DNA methylation states, which gain better performance than traditional methods like random forest and SVM. However, convolutional network based deep learning models that use one-hot encoding DNA sequence as input may discover limited information and cause unsatisfactory prediction performance, so more data and model structures of diverse angles should be considered. In this work, we proposed a hybrid sequence-based deep learning model with both MeDIP-seq data and Histone information to predict DNA methylated CpG states (MHCpG). We combined both MeDIP-seq data and histone modification data with sequence information and implemented convolutional network to discover sequence patterns. In addition, we used statistical data gained from previous three input data and adopted a 3-layer feedforward neuron network to extract more high-level features. We compared our method with traditional predicting methods using random forest and other previous methods like CpGenie and DeepCpG, the result showed that MHCpG exceeded the other approaches and gained more satisfactory performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app