Add like
Add dislike
Add to saved papers

p-Type dye-sensitized solar cells based on pseudorotaxane mediated charge-transfer.

Faraday Discussions 2019 April 6
The efficiency of p-type dye-sensitized solar cells (DSSCs) remains low compared to that of n-type congeners due to charge recombination events. We report a supramolecular approach to reduce recombination at the NiO-dye interface, realized by using the cyclophane cyclobis(paraquat-p-phenylene) ring (RING4+/RING3˙+) as a redox mediator and a dye (PN) functionalized with a 1,5-dioxynaphthalene (DNP) recognition site, promoting the supramolecular formation of a pseudorotaxane capable of directing charge transfer away from the NiO-dye interface. The binding affinity of RING4+ to PN is high (Kass = 3.4 × 104 M-1), with quenching of the photoexcited dye (PN*) ascribed to reduction of RING4+ to RING3˙+. The reduced RING3˙+ exhibits a lower binding affinity to PN, facilitating exchange with the excess RING4+ present in solution. This supramolecular phenomenon was implemented into p-type DSSCs by anchoring the PN dye on a NiO photocathode in conjunction with the RING4+/RING3˙+ redox couple, yielding a 10 fold enhancement in the short-circuit photocurrent (JSC) compared to control devices utilizing P1 dye or the methylviologen (MV2+/MV˙+) redox couple that cannot form pseudorotaxanes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app