Add like
Add dislike
Add to saved papers

Nanoscaled pearl powder accelerates wound repair and regeneration in vitro and in vivo.

Pearl powder has been used to treat many diseases like palpitations, insomnia, and epilepsy for thousands of years in Chinese medicine. It has demonstrated antioxidant, antiaging, antiradiative, and tonic activities. Pearl powder contains multiple active proteins, which are nutritious for skin cells and might be advantageous for wound repair and regeneration. However, its healing effect in vivo was not reported yet. This study aims to investigate the effects and the underlying mechanism of the pearl powders with different particle sizes in wound treatment. Briefly, the pearl powder with different sizes was characterized for their particle sizes and morphology. The protein release profiles of these powders were also studied. The influence of the different size of pearl powder in the proliferation, migration of skin cells was evaluated. Then, with the rat skin excision model, the effect of pearl powder on wound repair and regeneration was investigated. It was demonstrated that, all the micro and nanosized pearl powders could both increase the proliferation and migration of skin cells and accelerate the wound closure, as well as significantly enhanced the biomechanic strength of the healed skins. Moreover, the pearl powder treatment could improve the formation and regular deposition of collagen, and enhance the skin angiogenesis. Among all these in vitro and in vivo investigations, nanoscale pearl powder expressed the highest efficiency for healing. The mechanism might be contributed to the increased release of active proteins, enhanced tissue attachment, and the increased cellular uptake for the nano powder at the topical site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app