Add like
Add dislike
Add to saved papers

Imputed gene associations identify replicable trans-acting genes enriched in transcription pathways and complex traits.

Regulation of gene expression is an important mechanism through which genetic variation can affect complex traits. A substantial portion of gene expression variation can be explained by both local (cis) and distal (trans) genetic variation. Much progress has been made in uncovering cis-acting expression quantitative trait loci (cis-eQTL), but trans-eQTL have been more difficult to identify and replicate. Here we take advantage of our ability to predict the cis component of gene expression coupled with gene mapping methods such as PrediXcan to identify high confidence candidate trans-acting genes and their targets. That is, we correlate the cis component of gene expression with observed expression of genes in different chromosomes. Leveraging the shared cis-acting regulation across tissues, we combine the evidence of association across all available Genotype-Tissue Expression Project tissues and find 2,356 trans-acting/target gene pairs with high mappability scores. Reassuringly, trans-acting genes are enriched in transcription and nucleic acid binding pathways and target genes are enriched in known transcription factor binding sites. Interestingly, trans-acting genes are more significantly associated with selected complex traits and diseases than target or background genes, consistent with percolating trans effects. Our scripts and summary statistics are publicly available for future studies of trans-acting gene regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app