MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Early prediction of critical events for infants with single-ventricle physiology in critical care using routinely collected data

Victor M Ruiz, Lucas Saenz, Alejandro Lopez-Magallon, Ashlee Shields, Henry A Ogoe, Srinivasan Suresh, Ricardo Munoz, Fuchiang R Tsui
Journal of Thoracic and Cardiovascular Surgery 2019, 158 (1): 234-243.e3
30948317

OBJECTIVE: Critical events are common and difficult to predict among infants with congenital heart disease and are associated with mortality and long-term sequelae. We aimed to achieve early prediction of critical events, that is, cardiopulmonary resuscitation, emergency endotracheal intubation, and extracorporeal membrane oxygenation in infants with single-ventricle physiology before second-stage surgery. We hypothesized that naïve Bayesian models learned from expert knowledge and clinical data can predict critical events early and accurately.

METHODS: We collected 93 patients with single-ventricle physiology admitted to intensive care units in a single tertiary pediatric hospital between 2014 and 2017. Using knowledge elicited from experienced cardiac-intensive-care-unit providers and machine-learning techniques, we developed and evaluated the Cardiac-intensive-care Warning INdex (C-WIN) system, consisting of a set of naïve Bayesian models that leverage routinely collected data. We evaluated predictive performance using the area under the receiver operating characteristic curve, sensitivity, and specificity. We performed the evaluation at 5 different prediction horizons: 1, 2, 4, 6, and 8 hours before the onset of critical events.

RESULTS: The area under the receiver operating characteristic curves of the C-WIN models ranged between 0.73 and 0.88 at different prediction horizons. At 1 hour before critical events, C-WIN was able to detect events with an area under the receiver operating characteristic curve of 0.88 (95% confidence interval, 0.84-0.92) and a sensitivity of 84% at the 81% specificity level.

CONCLUSIONS: Predictive models may enhance clinicians' ability to identify infants with single-ventricle physiology at high risk of critical events. Early prediction of critical events may indicate the need to perform timely interventions, potentially reducing morbidity, mortality, and health care costs.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Trending on Read

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
30948317
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"