Add like
Add dislike
Add to saved papers

Graphite/Ag/AgCl nanocomposite as a new and highly efficient electrocatalyst for selective electroxidation of oxalic acid and its assay in real samples.

Herein, graphite/Ag/AgCl nanocomposite is introduced as a new electrocatalyst material for the electrocatalytic oxidation of oxalic acid. Graphite/Ag/AgCl was synthesized by electroless deposition of nano-sized metallic silver and then silver chloride on graphite powder. The material obtained was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Energy-dispersive X-ray spectroscopy. The nanocomposite was mixed with n-eicosane as binder and used as carbon paste electrode for electrocatalytic oxidation of oxalic acid (OA). The graphite/Ag/AgCl nanocomposite electrode showed good catalytic activity for the electroxidation of oxalic acid in H3 PO4 solution (0.05 mol L-1 ), leading to a distinct decrease in anodic overpotential (100 mV) and a substantial increase in anodic peak current (about 10 times), in comparison with the unmodified carbon paste electrode. Using the developed nanocomposite electrode and differential pulse voltammetry method, it became possible to determine oxalic acid in the concentration range of 0.01-0.75 mmol L-1 with detection limit of 3.7 × 10-6  mol L-1 . The electrode showed very high sensitivity of 1341.3 μA mM-1  cm-2 which is remarkably better than the previously reported oxalic acid sensors. Thanks to high sensitivity and good selectivity of the electrode, the proposed method was successfully applied for the determination of OA in human urine and spinach samples. The satisfactory results obtained, confirmed the applicability of this sensor in the practical analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app