Add like
Add dislike
Add to saved papers

An adaptive design for the identification of the optimal dose using joint modeling of continuous repeated biomarker measurements and time-to-toxicity in phase I/II clinical trials in oncology.

We present a new adaptive dose-finding method, based on a joint modeling of longitudinal continuous biomarker activity measurements and time to first dose limiting toxicity, with a shared random effect. Estimation relies on likelihood that does not require approximation, an important property in the context of small sample sizes, typical of phase I/II trials. We address the important case of missing at random data that stem from unacceptable toxicity, lack of activity and rapid deterioration of phase I patients. The objective is to determine the lowest dose within a range of highly active doses, under the constraint of not exceeding the maximum tolerated dose. The maximum tolerated dose is associated to some cumulative risk of dose limiting toxicity over a predefined number of treatment cycles. Operating characteristics are explored via simulations in various scenarios.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app