JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Elevated [CO 2 ] effects on crops: Advances in understanding acclimation, nitrogen dynamics and interactions with drought and other organisms.

Plant Biology 2019 April 5
Future rapid increases in atmospheric CO2 concentration [CO2 ] are expected, with values likely to reach ~550 ppm by mid-century. This implies that every terrestrial plant will be exposed to nearly 40% more of one of the key resources determining plant growth. In this review we highlight selected areas of plant interactions with elevated [CO2 ] (e[CO2 ]), where recently published experiments challenge long-held, simplified views. Focusing on crops, especially in more extreme and variable growing conditions, we highlight uncertainties associated with four specific areas: (1) While it is long known that photosynthesis can acclimate to e[CO2 ], such acclimation is not consistently observed in field experiments. The influence of sink-source relations and nitrogen (N) limitation on acclimation is investigated and current knowledge about whether stomatal function or mesophyll conductance (gm ) acclimate independently is summarised. (2) We show how the response of N uptake to e[CO2 ] is highly variable, even for one cultivar grown within the same field site, and how decreases in N concentrations ([N]) are observed consistently. Potential mechanisms contributing to [N] decreases under e[CO2 ] are discussed and proposed solutions are addressed. (3) Based on recent results from crop field experiments in highly variable, non-irrigated, water-limited environments, we challenge the previous opinion that the relative CO2 effect is greater under drier environmental conditions. (4) Finally, we summarise how changes in growth and nutrient concentrations due to e[CO2 ] will influence relationships between crops and weeds, herbivores and pathogens in agricultural systems. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app