Add like
Add dislike
Add to saved papers

Role of cannabinoid receptor 1 and the peroxisome proliferator-activated receptor α in mediating anti-nociceptive effects of synthetic cannabinoids and a cannabinoid-like compound.

Osteoarthritis (OA) is characterized by cartilage degeneration, subchondral sclerosis, and pain. Cannabinoids have well-established anti-nociceptive properties in animal models of chronic pain. The aim of this study is to evaluate the anti-nociceptive effects of synthetic cannabinoids (WIN-55,212 and HU210) and the cannabinoid-like compound palmitoylethanolamide (PEA) in rat models of OA and to assess the role of cannabinoid receptor 1 (CB1) and the peroxisome proliferator-activated receptor α (PPARα) in mediating these effects. Intra-articular injection of monosodium iodoacetate (MIA) in the knee joint was used as a model of osteoarthritis. The von Frey filament test and weight-bearing difference were used to assess the anti-nociceptive effects of WIN-55,212, HU210, and PEA on MIA-induced OA in rats. Open-field locomotor activity system was used confirm the analgesic effects of those compounds. HU210, WIN55, 212, and PEA in a dose-dependent manner restored the paw withdrawal threshold (PWT) and the weight-bearing difference induced by MIA injection. SR141716A (a CB1 antagonist) significantly reversed the anti-nociceptive effects of all the administered drugs in terms of PWT. However, in terms of weight-bearing difference, SR141716A significantly reduced the anti-nociceptive effect of HU210 but not PEA or WIN55, 212. GW6471 (a PPARα antagonist) significantly reversed the anti-nociceptive effects of PEA but not those of HU210 or WIN55, 212. HU210, WIN55, 212 and PEA significantly restored the MIA-induced reduction in locomotor activity. In conclusions, both CB1 and PPARα receptors are involved in mediating pain in osteoarthritis. Therefore, targeting these receptors may be of great clinical value.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app