Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

DeepFunc: A Deep Learning Framework for Accurate Prediction of Protein Functions from Protein Sequences and Interactions.

Proteomics 2019 June
Annotation of protein functions plays an important role in understanding life at the molecular level. High-throughput sequencing produces massive numbers of raw proteins sequences and only about 1% of them have been manually annotated with functions. Experimental annotations of functions are expensive, time-consuming and do not keep up with the rapid growth of the sequence numbers. This motivates the development of computational approaches that predict protein functions. A novel deep learning framework, DeepFunc, is proposed which accurately predicts protein functions from protein sequence- and network-derived information. More precisely, DeepFunc uses a long and sparse binary vector to encode information concerning domains, families, and motifs collected from the InterPro tool that is associated with the input protein sequence. This vector is processed with two neural layers to obtain a low-dimensional vector which is combined with topological information extracted from protein-protein interactions (PPIs) and functional linkages. The combined information is processed by a deep neural network that predicts protein functions. DeepFunc is empirically and comparatively tested on a benchmark testing dataset and the Critical Assessment of protein Function Annotation algorithms (CAFA) 3 dataset. The experimental results demonstrate that DeepFunc outperforms current methods on the testing dataset and that it secures the highest Fmax  = 0.54 and AUC = 0.94 on the CAFA3 dataset.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app