Add like
Add dislike
Add to saved papers

Hypoxia alleviation-triggered enhanced photodynamic therapy in combination with IDO inhibitor for preferable cancer therapy.

Biomaterials 2019 March 23
Photodynamic therapy (PDT) has attracted growing attention in the field of cancer therapy due to its non-invasive intervention and initiation of antitumor immune responses by use of non-toxic photosensitizers (PS) and topical light irradiation. However, inherent hypoxia and immunosuppression mediated by checkpoints in tumors severally impair the efficacy of PDT and PDT-induced immunity. Herein, a multi-functional nanoplatform is rationally constructed by fluorinated polymer nanoparticle saturated with oxygen in advance, which simultaneously encapsulated PS (Ce6) and an indoleamine 2,3-dioxygenase (IDO) inhibitor (NLG919). In particular, the tumor hypoxic microenvironment is obviously relieved and much more reactive oxygen species (ROS) is generated by fluorinated nanoparticle compared with alkylated polymer nanoparticle as a control in vitro and in vivo, this is mainly because the fluorinated polymers are endowed with high oxygen carrying capacity which also contributed to the relief of hypoxia. Meanwhile, compared to PDT alone, the co-encapsulation of IDO inhibitor and PS can further greatly enhance efficacy for inhibiting the growth of primary and abscopal tumors via enhanced T cell infiltration. This study can provide a convenient and practical strategy for enhancing the therapeutic effect of PDT and relieving immune suppression, in turn affording clinical benefits for cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app